## Interpolating Subdivision for Meshes with Arbitrary Topology

Denis Zorin

Peter Schröder

California Institute of TechnologyWim Sweldens

AT&T Bell LaboratoriesSubdivision is a powerful paradigm for the generation of surfaces of arbitrary topology. Given an initial triangular mesh the goal is to produce a smooth and visually pleasing surface whose shape is controlled by the initial mesh. Of particular interest are interpolating schemes since they match the original data exactly, and play an important role in fast multiresolution and wavelet techniques. Dyn, Gregory, and Levin introduced the Butterfly scheme, which yields C^1 surfaces in the topologically regular setting. Unfortunately it exhibits undesirable artifacts in the case of an irregular topology. We examine these failures and derive an improved scheme, which retains the simplicity of the Butterfly scheme, is interpolating, and results in smoother surfaces.

Papers | This Web Site

Final SIGGRAPH 96 Web site update: 25 October 1996.

For complete information on the next conference and exhibition, see: http/www.siggraph.org/s97/