
Mike Bailey
Oregon State University
mjb@cs.oregonstate.edu

Oregon State University
Computer Graphics

mjb – June 12. 2014

Seminar Goals

• Provide a background for everything else you will see at SIGGRAPH 2014

• Create a common understanding of computer graphics vocabulary

• Help appreciate the images you will see

• Get more from the Exhibition

• Provide pointers for further study

Oregon State University
Computer Graphics

mjb – June 12. 2014

Mike Bailey

• Professor of Computer Science, Oregon State University

• Has worked at Sandia Labs, Purdue University, Megatek,Has worked at Sandia Labs, Purdue University, Megatek,
San Diego Supercomputer Center (UC San Diego), and OSU

• Has taught over 5,500 students in his classes

• mjb@cs.oregonstate.edu

Oregon State University
Computer Graphics

mjb – June 12. 2014

Specific Topics

• The Graphics Process

• How to Attend SIGGRAPH

• Graphics Hardware

• Modeling

• Rendering

• Animation

• Finding More Information

Oregon State University
Computer Graphics

mjb – June 12. 2014

Oregon State University
Computer Graphics

mjb – June 12. 2014

You can’t see it all, so …
Think Strategically -- Make a Plan, Make a Schedule, Set Priorities !

Your time is valuable.

In general, rank your top 3
things you want to see for eachthings you want to see for each
timeslot. Then, if one session is
not as useful as you’d thought it
would be, quickly move to your
next prioritynext priority.

Remember to give priority
points to the things you can’tpoints to the things you can t
“re-live” after it has happened !

Oregon State University
Computer Graphics

mjb – June 12. 2014

OMG – Where do I Start in the Exhibition?

Oregon State University
Computer Graphics

mjb – June 12. 2014

Exhibition Strategy

• Look at the list of vendors in the Conference Locator

• Make a list of the ones you really must see and sort the list by booth number

• Booth numbers are XXYY, where XX is the Aisle # and

YY is (1/5)*the number of feet from the front

• For example, AMD = booth 1023, which is Aisle 10; 5*23 = 115 feet from the front

• Start at one end of the floor and work your way across

Oregon State University
Computer Graphics

mjb – June 12. 2014

Sorted
by name

Sorted
by boothby name by booth
number

Oregon State University
Computer Graphics

mjb – June 12. 2014

Exhibition Strategy

sl
e

10

sl
e

11

sl
e

9

A
is A
isA
is

Oregon State University
Computer Graphics

mjb – June 12. 2014

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Basic Computer Graphics Pipeline
MC

Model
Transform

View
Transform

Projection
Transform

Homogeneous
Division

Per-vertex
Lighting

ECWC CCEC

NDC

Viewport
Transform

NDC

Fragment
Processing,
Texturing,Raster

O

Rasterization
Framebuffer

SC

SCTexturing,
Per-fragment

Lighting

OpsFramebuffer

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates

Oregon State University
Computer Graphics

mjb – June 12. 2014

EC Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates

The Graphics Process

Li htiLighting
Information

3D
Geometric Rendering Image

Storage andModels

Texture

Storage and
Display

3D
Animation
D fi iti

Texture
Information

Definition

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Graphics Process: Geometric Modeling

3D
Scanning

Interactive

3D
Geometric

Models

Geometric
Modeling

Rendering
Models

Model
LibrariesLibraries

Displacement
Mapping

Material

Oregon State University
Computer Graphics

mjb – June 12. 2014

Mapping Properties

The Graphics Process: 3D Animation

Motion
DesignDesign

3D
Animation
Definition

Motion
Computation

(physics) Rendering
Definition(physics)

Motion
Capturep

Dynamic
Deformations

Oregon State University
Computer Graphics

mjb – June 12. 2014

Deformations

The Graphics Process: Texturing

Scanned
Image

Textures

Texture
Information

Procedural
(computed) Rendering(computed)

Textures

g

Painted
Textures

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Graphics Process: Lighting

Lighting
TypesTypes

(point, directional, spot)

Light
Positions Rendering

Lighting
InformationPositions g

Light
Colors

Light
Intensities

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Graphics Process: Rendering

3D
Geometric

Models Lighting
Information

Image
Storage

andRendering
Display

Texture3D
Animation
Definition

Texture
Information

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Graphics Process:
Image Storage and Display

Hardware
FramebufferFramebuffer

Rendering

Disk
Fil

Recording

Oregon State University
Computer Graphics

mjb – June 12. 2014

File Editing

The Graphics Process; Summary

Li htiLighting
Information

3D
Geometric Rendering Image

Storage andModels

Texture

Storage and
Display

3D
Animation
D fi iti

Texture
Information

Definition

Oregon State University
Computer Graphics

mjb – June 12. 2014

Oregon State University
Computer Graphics

mjb – June 12. 2014

MC Vertices

Generic Computer Graphics System

CPU

Input
Devices

Vertex
Processor

RasterizerB
u
s

Network
Fragment

SC Vertices

Pixel Parameters

Variables to interpolate

Interpolated variables

Z B ff

Fragment
Processor

MC = Model Coordinates
SC = Screen Coordinates
TC = Texture Coordinates TC

Video

Z-Buffer

Back

RGBAZ
Pixels

RGBA
Texels

Video
Driver

Double-buffered
F b ffTexture Memory

Front

Oregon State University
Computer Graphics

mjb – June 12. 2014

FramebuffersTexture Memory

The Framebuffer

Fragment
Processor

Z-Buffer

Video
DriverFront

Back

Double-buffered
Framebuffers

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Framebuffer Uses Additive Colors (RGB)

Red

Red, Green, and Blue are provided. The
rest are combinations of those three.

Yellow

Green

WhiteMagenta

G ee

Blue

Cyan

Cyan = Green + BlueBlue y

Magenta = Red + Blue

Yellow = Red + Green

Oregon State University
Computer Graphics

mjb – June 12. 2014

White = Red + Green + Blue

The Framebuffer:
Integer Color Storage

8 28 = 256
10

Bits/color # Intensities per colorB

10 210 = 1024
12 212 = 4096G

R

Total colors:
24 224 = 16.7 M

Bits/pixel

30 230 = 1 B
36 236 = 69 B

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Framebuffer:
Floating Point Color Storage

• 16- or 32-bit floating point for each color component

g g

B

Why so much?

G Many modern algorithms do arithmetic on the
framebuffer color components, or treat the
framebuffer color components as data. They need
the extra precision during the arithmetic

R

the extra precision during the arithmetic.

However, the display system cannot display all of
those possible colors.

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Framebuffer

• Alpha values• Alpha values

– Transparency per pixel
= 0. is invisible
 1 i= 1. is opaque

– Represented in 8-32 bits
(integer or floating point)

– Alpha blending equation:

Color   1C  (1  ) 2C
Oregon State University

Computer Graphics
mjb – June 12. 2014

0.0    1.0

The Framebuffer

•• ZZ--bufferbuffer
–– Used for hidden surface removalUsed for hidden surface removal

Z

B

–– Holds pixel depthHolds pixel depth

–– Typically Typically 3232 bits bits deepdeep

–– Integer or floating pointInteger or floating point

G

Total Z Values:# Bits / Z

R
32 232 = 4 B

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Framebuffer

Double-buffering: Don't let the viewer see any of the scene until the entire scene is drawn

U d tUpdate

Refresh

Video
DriverFront

Back

Double-buffered
Framebuffers

Video

“swap buffers”

Update Refresh
Driver

Back

Front

Oregon State University
Computer Graphics

mjb – June 12. 2014

Double-buffered
Framebuffers

The Video Driver

Z-Buffer

Video
Back

DriverFront

Double-buffered
Framebuffers

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Video Driver

•• N N refreshesrefreshes/second/second (N is usually between (N is usually between 50 50 and and 100100))

•• Framebuffer contains the R,G,B that define the color Framebuffer contains the R,G,B that define the color at each at each pixelpixel, ,, , pp

•• CursorCursor
-- Appearance is stored near the video Appearance is stored near the video driverdriver in in a “minia “mini--framebuffer”framebuffer”
-- x,yx,y is given by the CPUis given by the CPUyy g yg y

•• Video inputVideo input

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Computer Graphics Monitor(s)

Video
Driver

Oregon State University
Computer Graphics

mjb – June 12. 2014

Displaying Color on a
Computer Graphics LCD Monitor

•• Grid of electrodesGrid of electrodesG d o e ec odesG d o e ec odes

•• Color filtersColor filters

Oregon State University
Computer Graphics

mjb – June 12. 2014

Source: http://electronics.howstuffworks.com

Displaying Color on a Plasma Monitor

• Gas cell

• Phosphor

• Grid of electrodes

Oregon State University
Computer Graphics

mjb – June 12. 2014

http://electronics.howstuffworks.com

Display Resolution

•• PixelPixel resolutions resolutions (1280x1024, 1600x1200, 1920x1152 (1280x1024, 1600x1200, 1920x1152 are are common on the desktop)common on the desktop)

•• “4096” is 4096 x 2160“4096” is 4096 x 2160

•• LG’s new Ultra Widescreen is 3440 x 1440, 34”LG’s new Ultra Widescreen is 3440 x 1440, 34”

•• Human acuity: 1 arcHuman acuity: 1 arc--minute is achieved by viewingminute is achieved by viewing aa 19"19" monitormonitorHuman acuity: 1 arcHuman acuity: 1 arc minute is achieved by viewing minute is achieved by viewing a a 19 19 monitormonitor
with with 1280x1024 resolution from a 1280x1024 resolution from a distance distance of ~40 inchesof ~40 inches

Oregon State University
Computer Graphics

mjb – June 12. 2014

http://en.wikipedia.org/wiki/File:Pixel_geometry_01_Pengo.jpg

The Fragment Processor

Rasterizer

Fragment
Processor

Z-Buffer

Double-buffered

Texture Memory
Framebuffers

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Fragment Processor

• Takes in all information that describes this pixel

• Produces the RGBA for that pixel’s location in the framebufferProduces the RGBA for that pixel s location in the framebuffer

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Rasterizer

Vertex
Processor

Rasterizer

Fragmentg
Processor

Oregon State University
Computer Graphics

mjb – June 12. 2014

Rasterization

• Turn screen space vertex coordinates into pixels that make up lines
and polygons

• A great place for custom electronicsg p

• Anti-aliasing is often built-in

Oregon State University
Computer Graphics

mjb – June 12. 2014

Anti-aliasing is Implemented by Oversampling within Each Pixel

No AA 4x 16x

NVIDIA

Oregon State University
Computer Graphics

mjb – June 12. 2014

Anti-aliasing is Implemented by Oversampling within Each Pixel

4x 16x

Oregon State University
Computer Graphics

mjb – June 12. 2014

NVIDIA

Rasterizers Can Interpolate:

• X and YX and Y

• Red-green-blue values

• Alpha values

• Z values

• Intensities

• Surface normals• Surface normals

• Texture coordinates

• Custom values given by the shaders

Oregon State University
Computer Graphics

mjb – June 12. 2014

Texture Mapping

F t

B
u
s Fragment

Processor
s

Texture Memory

Oregon State University
Computer Graphics

mjb – June 12. 2014

Texture Memory

Texture Mapping

• “Stretch” an image onto a piece of geometry• Stretch an image onto a piece of geometry

• Image can be generated by a program or scanned in

• Useful for realistic scene generation

Oregon State University
Computer Graphics

mjb – June 12. 2014

http://2ols.com

Something Cool:
Write-Your-Own Fragment-Processor Code

Rasterizer

Fragment

Bump
Mapping

Fragment
Processor

Z-Buffer

Line Integral
Convolution

Texture Memory

Double-buffered
Framebuffers

Referred to as:
Pixel Shaders or Fragment Shaders

Texture Memory

Oregon State University
Computer Graphics

mjb – June 12. 2014

Pixel Shaders or Fragment Shaders

Procedural Texture Mapping
Create a texture from data. In this case, the fragment shaderg

takes a grid of heights and produces surface normals for lighting.

While this is “procedural”, the amount of height data is finite,
so you can still run out of resolution

Oregon State University
Computer Graphics

mjb – June 12. 2014

“Mandelzoom”:

Procedural Texture Mapping

Mandelzoom :
In this case, the texture is a pure equation, so
you never run out of resolution.

Oregon State University
Computer Graphics

mjb – June 12. 2014

“M d l ”

Procedural Texture Mapping

“Mandelzoom”:
You can, however, run out of floating point precision:

Oregon State University
Computer Graphics

mjb – June 12. 2014

Procedural Texture Mapping

And, of course, once you have an , , y
equation, think of all the other things
you can do with it.

Josie Hunter

Oregon State University
Computer Graphics

mjb – June 12. 2014

Josie Hunter

The Vertex Processor

CPU

Vertex
ProcessorB

u
s

Rasterizer

s

Oregon State University
Computer Graphics

mjb – June 12. 2014

Vertex Processor

• Coordinates enter in model units

• Coordinates leave in screen (pixel) units(p)

• Another great place for custom electronics

Oregon State University
Computer Graphics

mjb – June 12. 2014

Vertex Processor: Transformations

• Used to correctly place objects in the scene

• Translation

• Rotation

• Scaling

Oregon State University
Computer Graphics

mjb – June 12. 2014

Vertex Processor:
Windowing and Clipping

• Declare which portion of the 3D universe you are interested in viewing

• This is called the view volume

• Clip away everything that is outside the viewing volume

Oregon State University
Computer Graphics

mjb – June 12. 2014

Vertex Processor: Projection

• Turn 3D coordinates into 2D

– Parallel projection
Parallel lines
remain parallel

“vanishing point”

– Perspective projectionPerspective projection

Some parallel lines
appear to converge

Oregon State University
Computer Graphics

mjb – June 12. 2014

Vertex Processor: Projection

Parallel

Perspective

Oregon State University
Computer Graphics

mjb – June 12. 2014

Perspective

Something Cool:
Write-Your-Own Vertex Code

Vertex

Wireframe
Teapot Dome
P j i

CPU

Vertex
Processor

Projection

B
u
s

Rasterizer
s

Referred to as:
Vertex Shaders

Mars
Panorama
Dome
P j ti

Oregon State University
Computer Graphics

mjb – June 12. 2014

Projection

The CPU and Bus

Input
Vertex

Processor

CPU

Input
Devices

B
u

Type of
Board

Speed to
Board

Speed
from

Board

Network s

Board
PCI 132

Mb/sec
132

Mb/sec
AGP 8X 2 Gb/ 264AGP 8X 2 Gb/sec 264

Mb/sec
PCI

Express
4 Gb/sec 4 Gb/sec

Oregon State University
Computer Graphics

mjb – June 12. 2014

Express

All Together Now !

MC Vertices

CPU

Input
Devices

Vertex
Processor

RasterizerB
u
s

Network
Fragment

SC Vertices

Pixel Parameters

Variables

Variables

Z B ff

Fragment
Processor

MC = Model Coordinates
SC = Screen Coordinates
TC = Texture Coordinates TC

Video

Z-Buffer

Back

RGBAZ
Pixels

RGBA
Texels

Video
Driver

Double-buffered
F b ffTexture Memory

Front

Oregon State University
Computer Graphics

mjb – June 12. 2014

FramebuffersTexture Memory

Oregon State University
Computer Graphics

mjb – June 12. 2014

What is a Model?

A is a model of B if A can be used to ask questions about B.

In computer graphics applications, what do we want to ask about B?

Wh t d B l k lik ?• What does B look like?

• How do I want to interact with (shape) B?

• Does B need to be a legal solid?g

• How does B interact with its environment?

• What is B’s surface area and volume?

These questions, and answers, control what type of
t i d li d t d

Oregon State University
Computer Graphics

mjb – June 12. 2014

geometric modeling you need to do

Explicitly Listing Geometry and Topology

M d l i t f th d f ti d f dModels can consist of thousands of vertices and faces – we need
some way to list them efficiently

Oregon State University
Computer Graphics

mjb – June 12. 2014

http://graphics.stanford.edu/data/3Dscanrep

static GLfloat CubeVertices[][3] =

Explicitly Listing Geometry and Topology
32

static GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ 1 1 1 }

76

{ -1., 1., -1. },
{ 1., 1., -1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ 1 1 1 }

0 1

{ -1., 1., 1. },
{ 1., 1., 1. }

};

t ti GLfl t C b C l [][3]

4 5

static GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
{ 1., 0., 0. },
{ 0 1 0 }

static GLuint CubeIndices[][4] =
{

{ 0, 2, 3, 1 },
{ 4 5 7 6 }{ 0., 1., 0. },

{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0 1 1 }

{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0 1 5 4 }

Oregon State University
Computer Graphics

mjb – June 12. 2014

{ 0., 1., 1. },
{ 1., 1., 1. },

};

{ 0, 1, 5, 4 }
};

Cube Example

Oregon State University
Computer Graphics

mjb – June 12. 2014

Solid Modeling Using Boolean Operators

Two Overlapping Solids Union

Oregon State University
Computer Graphics

mjb – June 12. 2014

Intersection Difference

Curve Sculpting – Bezier Curve Sculpting

P1
P2

P0

1

P3

3 2 2 3() (1) 3 (1) 3 (1)P t t P t t P t t P t P   0 1 2 3() (1) 3 (1) 3 (1)P t t P t t P t t P t P      

0. 1.t 

Oregon State University
Computer Graphics

mjb – June 12. 2014

Curve Sculpting – Bezier Curve Sculpting Example

Oregon State University
Computer Graphics

mjb – June 12. 2014

Curve Sculpting – Bezier Curve Sculpting Example

Oregon State University
Computer Graphics

mjb – June 12. 2014

Surface Sculpting

Wireframe SurfaceWireframe Surface

Oregon State University
Computer Graphics

mjb – June 12. 2014

Surface Equations can also be used for Analysis

With Contour Lines Showing CurvatureWith Contour Lines Showing Curvature

Oregon State University
Computer Graphics

mjb – June 12. 2014

Volume Sculpting

Sederberg and Parry

Oregon State University
Computer Graphics

mjb – June 12. 2014

Oregon State University
Computer Graphics

mjb – June 12. 2014

Rendering

Rendering is the process of creating an image of a geometric
model Again there are questions you need to ask:model. Again, there are questions you need to ask:

H li ti d I t thi i t b ?• How realistic do I want this image to be?

• How much compute time do I have to create this image?

• Do I need to take into account lighting?g g

• Does the illumination need to be global or will local do?

• Do I need to take into account shadows?

• Do I need to take into account reflection and refraction?

Oregon State University
Computer Graphics

mjb – June 12. 2014

Fundamentals of Computer Graphics Lighting

LR

LG

LB
White Light

What the light
can produce

ER
EG
E

can produce

G Li ht

MR
MG
MEB

What the
eye sees

Green LightMB
What the
material can
reflect

ER = LR * MR
EG = LG * MG
EB = LB * MB

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Computer Graphics Lighting Environment

n R

I

L E
 



I

P
P Point being illuminated
I Light intensityI Light intensity
L Unit vector from point to light
n Unit vector surface normal
R Perfect reflection unit vector
E Unit vector to eye position

Oregon State University
Computer Graphics

mjb – June 12. 2014

E Unit vector to eye position

Three Elements of
Computer Graphics Lighting

1. Ambient = a constant Accounts for light bouncing “everywhere”

2. Diffuse = I*cosΘ Accounts for the angle between the
incoming light and the surface normalincoming light and the surface normal

Accounts for the angle between the “perfect
3. Specular = I*cosS

Accounts for the angle between the perfect
reflector” and the eye; also the exponent, S,
accounts for surface shininess

Note that cosΘ is just the dot product between unit vectors L and n

Note that cos is just the dot product between unit vectors R and E

Oregon State University
Computer Graphics

mjb – June 12. 2014

+
Ambient

+ Three Elements of
Computer Graphics Lighting

+
Diffuse

+

S lSpecular

=

Oregon State University
Computer Graphics

mjb – June 12. 2014

Lighting Examples

Spot Lights

Omnidirectional Point Light at the Eye

Oregon State University
Computer Graphics

mjb – June 12. 2014

Two Types of Rendering

1. Starts at the object

2. Starts at the eye

Oregon State University
Computer Graphics

mjb – June 12. 2014

Starts at the Object

This is the typical kind of rendering you get on a graphics card.
Start with the geometry and project it onto the pixels.

Oregon State University
Computer Graphics

mjb – June 12. 2014

How do things in front look like they are really in front?

Your application might draw the polygons in 1-2-3-4-5-6 order,
but 1, 3, and 4 still need to look like they were drawn last:

3
5

61

3

4
2

Either the polygons need to be re-arranged to be drawn
in a back-to-front order, or we need to have a Z-buffer

Oregon State University
Computer Graphics

mjb – June 12. 2014

Another From-the-Object Method -- Radiosity

Based on the idea that all surfaces gather
light intensity from all other surfaceslight intensity from all other surfaces

Th f d t l di it ti iThe fundamental radiosity equation is an
energy balance that says:

“The light energy leaving surface i equals the
t f li ht t d b f iamount of light energy generated by surface i

plus surface i’s reflectivity times the amount of
light energy arriving from all other surfaces”

i i i i i j j j i
j

B A E A B A F   

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Radiosity Equation

i i i i i j j j i
j

B A E A B A F   
is the light energy intensity shining from surface element i

is the area of surface element i

iB
A is the area of surface element i

is the internally-generated light energy intensity for surface element i

iA

iE

is surface element i’s reflectivity

is referred to as the Form Factor, or Shape Factor, and describes
what percent of the energy leaving surface element j that arrives at

i

j iF 
what percent of the energy leaving surface element j that arrives at
surface element i

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Radiosity Shape Factor

 
2

cos cos
(,)

(,)
j

i j
j i j i

Ai A

F visibility di dj dA dA
Dist di dj

 
  

Oregon State University
Computer Graphics

mjb – June 12. 2014

The Radiosity Matrix Equation

i i i i i j j j i
j

B A E A B A F   Expand

     

For each surface element, and re-arrange to
solve for the surface intensities, the B’s:

1 1 1 1 1 2 1 1 1 1

2 2 1 2 2 2 2 2 2 2

1
1

N

N

F F F B E
F F F B E
  
  

  

  

        
                      

1 2 1N N N N N N N N NF F F B E    

                         

This is a lot of equations!

Oregon State University
Computer Graphics

mjb – June 12. 2014

Radiosity Examples

Cornell University

Oregon State University
Computer Graphics

mjb – June 12. 2014
Cornell University

Starts at the Eye

The most common approach in this category is ray-tracing:

Splat!Splat!

Oregon State University
Computer Graphics

mjb – June 12. 2014

The pixel is painted the color of
the nearest object that is hit.

Starts at the Eye

It’s also easy to see if this point lies in a shadow:

Oregon State University
Computer Graphics

mjb – June 12. 2014

Fire another ray towards each light source. If the ray
hits anything, then the point does not receive that light.

Starts at the Eye

It’s also easy to handle reflection

normal

Oregon State University
Computer Graphics

mjb – June 12. 2014

Fire another ray that represents the bounce from the
reflection. Paint the pixel the color that this ray sees.

Starts at the Eye

It’s also easy to handle refraction

normal

Oregon State University
Computer Graphics

mjb – June 12. 2014

Fire another ray that represents the bend from the
refraction. Paint the pixel the color that this ray sees.

Ray Tracing Examples

Oregon State University
Computer Graphics

mjb – June 12. 2014

Oregon State University
Computer Graphics

mjb – June 12. 2014

Forward Kinematics:
Change Parameters – Things Move

(All Children Understand This)()

3

2

1

Oregon State University
Computer Graphics

mjb – June 12. 2014

Forward Kinematics: Transformation Hierarchies

Locations?

33

2

1

2

1

2

Ground

1

Oregon State University
Computer Graphics

mjb – June 12. 2014

Inverse Kinematics (IK):
Things Need to Move – What Parameters Will Make Them Do That?

Oregon State University
Computer Graphics

mjb – June 12. 2014

Inverse Kinematics

Forward Kinematics solves the problem “if I know the link transformation parametersForward Kinematics solves the problem “if I know the link transformation parameters,
where are the links?”.

Inverse Kinematics (IK) solves the problem “If I know where I want the end of the chain
to be (X*,Y*), what transformation parameters will put it there?” (,), p p

(X*,Y*)3?

1?

2?

Ground

Oregon State University
Computer Graphics

mjb – June 12. 2014

Particle Systems:
A Cross Between Modeling and Animation?

Oregon State University
Computer Graphics

mjb – June 12. 2014

Particle Systems:
A Cross Between Modeling and Animation?

The basic process is:

Random
Emit

Random
Number

Generator

DisplayDisplay

DisplayUpdate

Oregon State University
Computer Graphics

mjb – June 12. 2014

Particle Systems Examples

Oregon State University
Computer Graphics

mjb – June 12. 2014

Chuck Evans

Animating using Physics

D0 = unloaded spring length

0() 
FD D

D0

D0 = unloaded spring length

D

k = spring stiffness in
Newtons/meter or

0()
k

D-D0
Newtons/meter or
pounds/inch

Or, if you know the
di l t th f displacement, the force
exerted by the spring is:

 0 F k D D
Oregon State University

Computer Graphics
mjb – June 12. 2014

Force = F

 0F k D D
This is known as Hooke’s law

Animating using the Physics of a Mesh of Springs

+Y

“Lumped Masses”

Oregon State University
Computer Graphics

mjb – June 12. 2014

Simulating a Bouncy String

Oregon State University
Computer Graphics

mjb – June 12. 2014

Placing a Physical Barrier in the Scene

Oregon State University
Computer Graphics

mjb – June 12. 2014

Animating Cloth

Oregon State University
Computer Graphics

mjb – June 12. 2014

Cloth Examples

Oregon State University
Computer Graphics

mjb – June 12. 2014

Cloth Examples

David Breen, Donald House, Michael Wozny: Predicting the
Drape of Woven Cloth Using Interacting Particles

Oregon State University
Computer Graphics

mjb – June 12. 2014

Cloth Examples

MiraLab, University of Geneva

Oregon State University
Computer Graphics

mjb – June 12. 2014

Functional Animation:
Make the Object Want to Move Towards a Goal Position

k

c

0mx cx kx   
m

Oregon State University
Computer Graphics

mjb – June 12. 2014

Functional Animation:
While Making it Want to Move Away from all other Objects

repulsive
mx F

Repulsion Coefficient

repulse
repulsive Power

C
F

d


m

Distance between the
boundaries of the 2 bodies

Repulsion
Exponent

Oregon State University
Computer Graphics

mjb – June 12. 2014

Total Goal – Make the Free Body Move Towards its Final Position
While Being Repelled by the Other Bodies

k

c

m

mx cx kx F   

Oregon State University
Computer Graphics

mjb – June 12. 2014

Increasing the Stiffness

Oregon State University
Computer Graphics

mjb – June 12. 2014

Stiffness = 3, 6, 9

Increasing the Repulsion Coefficient

Repulse = 10, 30, 50

Oregon State University
Computer Graphics

mjb – June 12. 2014

NaturalPoint Motion Capture as an Input for Animation
Polhemus

Oregon State University
Computer Graphics

mjb – June 12. 2014

Polhemus MocapLab

Oregon State University
Computer Graphics

mjb – June 12. 2014

