This animation demonstrates a method for generating animations of jellyfish umbrellas and many tentacles considering the influence of fluid force. Since the computational cost of precise numerical calculations reflecting the appearance of the umbrella and tentacles moving softly in a fluid is too high, this method constructs a computational model with a simplified physical basis. The model is straightforward to implement, has a low computational cost, and capable of generating visually plausible results. It is possible to apply changes to various properties of the motion, such as the propagation of pulsations, simply by changing values of Young's modulus and the velocity of flow in the target environment. In addition, by changing the form of the umbrella, or the length of the tentacles and other variables, it is possible to animate various types of jellyfish.

Acknowledgement
Some background images are from CG artworks by Professor Yoichiro Kawaguchi, The University of Tokyo.
The source code of the MPS method is provided by Professor Seiichi Koshizuka, The University of Tokyo.
This project is funded by JST CREST.