SIGGRAPH 96
Papers

Hierarchical Image Caching for Accelerated Walkthroughs of Complex Environments

Jonathan Shade
Dani Lischinski
David H. Salesin
Tony DeRose
University of Washington

John Snyder
Microsoft Research

We present a new method that utilizes path coherence to accelerate walkthroughs of geometrically complex static scenes. As a preprocessing step, our method constructs a BSP-tree that hierarchically partitions the geometric primitives in the scene. In the course of a walkthrough, images of nodes at various levels of the hierarchy are cached for reuse in subsequent frames. A cached image is reused by texture-mapping it onto a single quadrilateral that is drawn instead of the geometry contained in the corresponding node. Visual artifacts are kept under control by using an error metric that quantifies the discrepancy between the appearance of the geometry contained in a node and the cached image. The new method is shown to achieve speedups of an order of magnitude for walkthroughs of a complex outdoor scene, with little or no loss in rendering quality.


Papers Main Page ACM SIGGRAPH Contact us about:
Papers | This Web Site

Final SIGGRAPH 96 Web site update: 25 October 1996.
For complete information on the next conference and exhibition, see: http/www.siggraph.org/s97/